e

2o

Design-Based Mission Operation:

Meemong Lee, Richard J. Weidner, Wenwen Lu
Jet Propulsion Laboratory
4800 Oak Grove, Pasadena, CA 90272
818-254-2228
meemong.lee @jpl.nasa.gov,
richard. weidner @jpl.nasa.gov,
wenwen.lu@jpl.nasa.gov,

Abstract --- The Virtual Mission project led by the Mission
Simulation and Instrument Modeling Group at JPL has been
playing an active role in the NASA-wide information
technology infusion programs, such as, Information System
Technology, Next-Generation Infrastructure Technology,
and Intelligent Synthesis Environment. The goal of the
Virtual Mission project is to enable automated design space
exploration, progressive design optimization, and lifecycle-
wide design validation to ensure mission success. Design-
based mission operation has been a major part of the
research effort in order to establish system-wide as well as
lifecycle-wide impact analysis as an integral part of the
mission design process. The design-based mission operation
is approached by implementing Virtual Mission Lifecycle
(VML), modeling and simulation tools and system
engineering processes for building a virtual mission system
that can perform a realistic mission operation during the
design phase of a mission. As in the real mission lifecycle
convention, the VML is composed of design, development,
integration and test, and operation phases. This paper
describes the four phases of the VML addressing a major
challenge per phase, mission model framework, virtual
prototyping, agent-based mission system integration, and
virtual mission operation.

TABLE OF CONTENTS

INTRODUCTION

VIRTUAL MISSION LIFECYCLE
MISSION MODEL FRAMEWORK
VIRTUAL PROTOTYPING
AGENT-BASED INTEGRATION
VIRTUAL MISSION OPERATION
MISSION LIFECYCLE ALIGNMENT
FUTURE DIRECTION

COoNSOU A WD

1. INTRODUCTION

The Virtual Mission project is a consortium of modeling and
simulation technology R&D activities led by the Mission
Simulation and Instrument Modeling Group at JPL. The
NASA technology programs that have been supporting the
R&D activities include Space Science Information System
(SSIS), Next Generation Infrastructure System (NGIS),

! 0-7803-5/00/$10.00 © 2001IEEE

High-performance Computing and Communication (HPCC),
and Intelligent Synthesis Environment initiative (ISE). Each
program addresses a specific technology area in modeling
and simulation: SSIS, science targets and experiment
scenarios; NGIS, mission model infrastructure, HPCC,
distributed mission simulation, and ISE, system lifecycle
synthesis. These technology areas are main ingredients for
developing a dynamically configurable virtual mission
system that can be operated in a wide range of hypothetical
target body phenomena.

The VM project pursues the following three objectives to

facilitate a revolutionary mission system design process:

1) Reversible design: to formulate a mission model space
in which all phases of the lifecycle can be expressed
sharing a common mission model taxonomy, and the
design processes can be propagated bi-directionally
from components to system to operation, as well as
from operation to system to components.

2) Integrated design: to develop a virtual mission system
that can simulate an integrated system behavior based
on the representation of the subsystem designs, so that
each subsystem design can be progressively refined
with system-level perspectives and feedback.

3) Validated design: to perform system level operation
analyses for comprehensive validation of the mission
system design with realistic operation scenarios and
mission environments. The system-level operation
validates subsystem interactions, time-dependent
resource usage, and environment sensitive command
and data handling.

The VM approaches these objectives by implementing three
interacting modeling and simulation layers: a mission model
architecture layer, a mission system simulation layer, and a
mission operation simulation layer. In a previous paper,
“Mission Lifecycle Modeling and Simulation” [1], the three
layers were described from the over-all mission lifecycle
perspective. This paper discusses the perspective from the
operation phase of the mission lifecycle with an emphasis on
the third objective, validated design.

During the operation phase, the operability of the mission
system and the impact of the subsystem interdependencies
are comprehensively analyzed. If the analysis results are not

ne

favorable, it indicates that the science return may be reduced
since it will be too late to change the mission system after
launch. The VM project considers a comprehensive and
iterative validation of the mission system design by enabling
execution of the operation phase activities during the design
phase is the ultimate design optimization process.

The system-level operation analysis of the validated design
requires development of a pseudo-mission system that can
be operated for realistic science observation scenarios. The
pseudo-mission system is referred to as the Virtual Mission
System (VMS), indicating that it is an integration of
subsystems that are implemented entirely in software. The
subsystem categorization of VMS is logical (versus
physical) in that the subsystems are created to represent the
mission operation functions (navigation, attitude control,
communication, observation, etc.). Each logical subsystem
may be mapped to a set of hardware and software
components in a real mission system.

This paper discusses the process of design, development,
integration, and operation of the Virtual Mission System.
This process is referred to as the Virtual Mission Lifecycle
(VML). In Section 2, the technical challenges of the four
phases of VML are described along with a brief summary of
the technical approaches. The subsequent four sections
provide detailed discussions on the technical approaches:
Section 3, mission-generic modeling framework; Section 4,
model-based virtual subsystem prototyping; Section S,
intelligent mission model agents for dynamic system
integration; and Section 6, time-based operation simulation
and distributed visualization for simulation process
monitoring. The final two sections present on going and
planned extensions of VM. Section 7 presents three on going
efforts of applying VM to the entire mission lifecycle:
development phase (Instrument Testbed), integration phase
(Flight System Testbed), and operation phase (science
observation design for Deep Space One mission). Section §
introduces a new research activity, Space Mission Semiotics,
where an evolutionary communication framework that can
be used as a framework for intelligent spacecraft system
development will be pursued as an extension to VM.

2. VIRTUAL MISSION LIFECYCLE

The VML is composed of four phases: property model
design, virtual prototype development, agent-based
distributed simulation system integration, and virtual
mission operation. The relationship between the VML and
the mission lifecycle is depicted in Figure 1 where the VML
is introduced as a shortcut to mission success validation
during the concept design and detailed design phases. The
software systems in VML are implemented in C++ for
UNIX platforms and in Visual C++ for Windows platforms.
The VML implementation closely observes the adaptive
object-oriented software engineering principle [2]. This
section describes four major technical challenges in the area

of modeling and simulation, one major challenge per phase,
following the lifecycle order: mission-generic mission
system modeling framework development, time-sensitive
performance property simulation, dynamic configuration and
inter-subsystem synchronization, and operation scenario
design and execution monitoring. Each paragraph below
introduces one of these challenges.

Concept o~ Science
Devebl;lment ' PP Retwrn Analysis
Eld Ky
" A
/4 Virual
/ Virtual Operation
- Mission . '
Bpgimjed Lifecycle Fi ,‘ Operation
N Agent-based’
’ System
Propery o Inegrtion
Descriptors "' Pl
. Virual ,~
™ v o Prototyping
Integraton
Development & Test
™

Figure 1 Virtual Mission Lifecycle

The mission-generic modeling and simulation framework is
the major challenge in the property model design phase of
VML, and it is developed at two levels: a space mission
context level, and a software engineering level. The mission
context level deals with the functional abstraction of the
mission system architecture involving logical subsystem
architecture, a structured subsystem property description
method, and a subsystem-domain-specific modeling
language. The software engineering level, the second level
of the framework, deals with adaptive object-oriented
software implementation methods involving automated
parser generation, automated model object class
composition, dynamic instantiation of the model object, and
the construction of the derived simulation class. The
technical details of implementing a mission-generic mission
system model framework are described in Section 3.

Time-sensitive performance property simulation refers to a
high-fidelity operation behavior simulation where the
operation behavior is derived by propagating the
performance property at a very fine temporal resolution. In
general, the high-fidelity operation behavior simulation is
applied for visual verification of the integrated system
behavior when the system behavior is too complex for
traditional analysis. A complex system behavior example
can be found during the science experiment simulation,
where the science target phenomena and the operation
behavior of the attitude control system, navigation system,
and instrument system are integrated at a sub-second time

resolution. VM achieves the time-sensitive performance
property simulation by developing virtual prototypes of the
subsystems. Section 4 describes the virtual prototyping
process in detail.

The third phase of VML is agent-based dynamic system
integration, which faces the challenges of two separate
aspects of integration: the integration of mission design
information, and the integration of the software processes.
The information integration involves coherent interaction
with a large number of distributed data sources and
multidisciplinary data contents, such as spacecraft CAD
files, trajectory files, target body data, subsystem
performance specs, etc. The software process integration
involves data-flow managers, client-server protocols, time-
stamped subsystem commands, and multi-level time
management. Systematic utilization of the complex design
data products in a distributed mission simulation
environment requires intelligent agents that are capable of
understanding and interacting with their environment on the
behalf of their user, of moving about the Web, and of
forming and executing rudimentary decisions. Section 5
discusses implementation of three types of intelligent
mission model agents that provide a dynamic mission
environment configuration.

Finally, in the virtual mission operation phase of VML,
autonomous operation scenario design and execution
monitoring is approached by developing an event-driven
observation scenario language and a distributed visualization
platform. The event-driven observation scenario language is
supported by a set of model-based analysis software systems
for translating the abstract event conditions to a specific
event time range. The event conditions include the desired
target state, subsystem interdependency, and subsystem
resource requirement. Visualization of the operation
scenario execution provides a precise monitoring of the
operation behavior of the individual subsystems as well as
an integrated system enabling multidisciplinary design
validation. Section 6 discusses the observation language
syntax, model-based analysis software, and the mission
operation visualization.

3. MISSION MODEL FRAMEWORK

A space mission is an extremely complex entity that requires
multiple levels of system engineering processes including
hardware, software, and operation. Each system engineering
process level employs a discipline-oriented framework to
organize the development activities. In VM, a mission is
regarded from the space science exploration perspective
involving science targets, science instruments, and a
spacecraft system that operates the science instruments to
observe the target phenomena. Thus, the mission model
framework is categorized into three domains: a spacecraft
system, a payload system, and a target system. The

spacecraft system functions include navigation, attitude
control, data processing, and communication. The Payload
system functions include observation activities of the sensor
systems. The target system functions include geometric,
radiometric, and dynamic properties of the target
phenomena.

As shown in Figure 2, the system properties of the above
three domains are grouped into three types: physical, logical,
and dynamic system properties. Three model types are
composed corresponding to the three property groups: a
structure model, physical properties; a performance model,
logical properties; and an operation model, dynamic system
state properties. Each model type utilizes a structured model
description method for automated model object class
construction. The composition of the three model types and
the model description method are described below.

The subsystems whose operation properties involve
mechanical articulation and geometric alignment with the
physical world employ the structure model type to describe
the structure required for the operation simulation. For
example, the structure model of the attitude control
subsystem may be a simplified spacecraft structure that can
be applied for visual verification of the spacecraft system
attitude with respect to the instrument’s boresight and
sunlight constraints. The structure models are composed
based on the CAD (Computer-Aided Design) files of the
hardware system. Auxiliary structures, such as Sun
direction, instrument's field-of-view, or constraint cones,
may be added to indicate the geometric relationship more
precisely. Open Inventor language format (IV) is used for 3-
D visualization and manipulation of the structure.

A performance model is composed for each subsystem to
represent the expected capability ranges of the subsystem
functions that are relevant to the operation of the subsystem.
For example, the performance model of a science camera
system is described for the signal sensitivity and distortion
properties by listing the functional capabilities of optics,
detectors, and electronics for the relevant geometric and
radiometric design specifications. The fidelity of the
performance models depends on the required simulation
fidelity. In VM, the performance models that are closely
related to the science data product generation, such as
attitude control, navigation, and instrument, are composed
with higher fidelity. The expected capability range of a
subsystem may be based on the design specification or the
analysis results of a specific design. The inter-subsystem
dependency is the main challenge involved in composing the
performance models. The inter-dependency is expressed via
a set of reserved multidisciplinary model parameters so that
the performance models can be cross-referenced.

An operation model is composed for each subsystem
representing the general limitations and constraints, and
allowed control modes and associated resource usage

following section with respect to the software engineering
process of the three classes.

4. VIRTUAL PROTOTYPING

Implementation of a software system that simulates the
properties of a subsystem (prescribed with the three types of
models discussed in the previous section) is referred to as
“virtual prototyping” in this paper. The term “virtual” is
used to indicate that the subsystem exists in cyberspace not
in physical space. The term “prototyping” is used to
emphasize that the virtual subsystem can be treated as if it
were a physical prototype subsystem with respect to
commanding, mission data product generation, and resource
usage behavior. A virtual prototype is composed of three
basic classes: a model configuration class, a static property
class, and a dynamic property class. Each class is discussed
below.

The model configuration class integrates the three types of
model descriptors of a subsystem so that they can be utilized
for creating the subsystem properties and operation
behavior. The model configuration class is composed of a
set of member functions: a model script token analyzer, a
model script syntax parser, and several supporting functions.
As shown in Figure 3, the C++ codes for the parser and the
lexical analyzer are automatically generated by the SAX and
LUTHOR software systems [3,4] from the grammar and
token descriptions of the model syntax. SAX creates the
model configuration object class library integrating the
automatically generated member functions (See Figure 3.)

Configuration class == @-ﬁgnnff%

Descriptor Syntax
Token List ot L) -—-l-— x_{glé :

Crammar (eccY) —

Model dlass

Figure 3 Automated Model Class Construction

The static property class provides the computational
functions necessary to establish the subsystem's identity. The
static property is implemented as a derived class of the
model configuration class by integrating the software
modules that computationally model the subsystem
performance. For example, the performance simulator of a

camera system is composed of a set of physical property
synthesizers representing the camera system component
functions (e.g., point spread function, dark current, A/D
conversion) and their value specification methods (e.g.,
uncertainty range, probability distribution).

The dynamic property class is implemented as a friend class
of the static property class for simulating time-dependent
subsystem states during command execution. The dynamic
property class provides two major operation simulation
functions, a command handler (subsystem internal state
transition manager) and a time-sensitive operation behavior
generator (subsystem internal state propagation manager),
each of whom is described in the following paragraphs.

The command handler of a subsystem simulates the function
of the software module of the subsystem in terms of
receiving and verifying the incoming commands, planning
the execution of the verified commands, interacting with the
hardware devices, and providing the data/information to the
external world. For example, the attitude contro! system has
the following five basic commands: Set (deadband,
acceleration, velocity), Point (change the attitude to point to
a target with a specified body vector), Track (maintain the
relative target attitude), Cruise (no turn), and Slew (turn with
the specified turn rate). As a specific command is received,
the command handler of the attitude control system verifies
the command against the current state of the system and
plans the execution by consulting with the performance
simulator for maximum acceleration, jitter profile, and
pointing inaccuracy.

The operation behavior simulator propagates execution of a
command after the command handler initiates the command.
The propagation of a command execution indicates updating
of the spacecraft system state with respect to the external
world as well as internal resources as the command
execution progresses. During the Point command execution,
the attitude of the spacecraft system changes gradually
toward the target whose position is estimated by the
navigation system. The attitude control system estimates the
attitude and generates telemetry stream periodically.
Simulation of the operation behavior during a command
execution requires simulation of the predicted state,
achieved state, and estimated state of the spacecraft system.
The three states represent different types of knowledge
uncertainty: the predicted state, model uncertainty, the
achieved state, performance uncertainty, and the estimated
state processing uncertainty.

5. AGENT-BASED INTEGRATION

The virtual prototype systems described above require
multiple layers of coordination in order to perform a desired
mission operation as an integrated mission system. The
coordination challenges can be grouped into three areas:
information exchange among multiple disciplines, command

profiles. The general limitations and constraints include
subsystem-specific operation peculiarities. For example, a
camera system with a specific set of exposure duration
settings may list the exposure duration table as a part of the
general limitations so that exposure commands can be
verified against the available settings in the table. Each
control mode is expressed following a predefined command
syntax rule that is composed of a command name and a set
of parameters. For the automated command syntax
verification, each parameter is described with the
corresponding data type and range. The resource usage may
be specified for the expected execution duration (referenced
to a specific computational platform), memory usage,
storage system usage, etc.

expressed as a set of low-level parameters when the property
has multiple dependencies or involves computational
processing of the low-level parameters. The main
considerations in defining the model description syntax
include subsystem-domain-sensitive model parameter
structure for streamlined design product representation,
structured expression hierarchy for automated description
parsing, and scientifically sensible vocabulary for
multidisciplinary communication. These considerations are
essential to enable cost effective and timely adaptation of the
VML to a specific mission.

System Categorization Subsystem Categorization Property Categorization

Stwucture Performance Operation

Stars

System
Y Sky

Encounter

I(;}eome;ric

Target Solid Toperties

g =—————| Plenets < Atmosphere Radiomerric
Propertes

Dynamics
Properties

Virtual \ Passive /

Optics

Mission Insrument Desectors
Eletronics
Payload
System / Generator
Adaive L Travsmiter (Command/
Instrurnent Data
Receiver Handling
Propertes
Navigaton
Ardtude Control
Spacecraft Processor
System
Storage
Cormmuni cadon

Figure 2 Mission Model Framework

The three types of models discussed above are composed
employing a hierarchical model parameter structure. The
basic parameter description syntax is composed of a name
and a value where the value can be a scalar, a vector, an
array, or a keyword. Each value can be expressed
statistically (assuming Gaussian distribution) with an
average and a standard deviation. A property may be

The mission model framework enables the simulator of a
subsystem to be used as the basis for all cases of the
subsystem by loosely coupling the simulator with the model
description method. The loose coupling is implemented by
creating three object classes: a model configuration class, a
static property (operation-mode-independent) class, and a
dynamic property (operation-mode-dependent) class. The
impact of the mission model framework is discussed in the

and data flow among distributed processes, and process
distribution among heterogeneous platforms. To overcome
the coordination challenges in the above three areas, VM
utilizes intelligent mission model agents that are composed
of domain-intelligent, platform-independent, and network-
friendly information exchange components.

The intelligent agent is capable of understanding and
interacting with its environment on the behalf of its user, of
moving about the web, and of forming and executing
rudimentary decisions. The information agent delivers useful
information to the user by actively performing search,
access, and retrieval of relevant information. The simulation
of the mission design process requires intelligent
information agents that search, access, and retrieve design
information including spacecraft trajectory, planet
ephemerides, planet kinematics, etc.

The combination of datasets from multiple sources is often
required to form particular information. Polymorphic
functionality is required that can recognize different forms
and transform them into a desired product. The technical
details of the intelligent mission model agents are presented
in the paper “Component-based Implementation of Agents
and Brokers for Design Coordination” [5].

As shown in Figure 4, the three systems of the VM integrate
the mission system design information through the
intelligent mission model agents as well as the locally
composed mission models. The locally composed mission
models include the models whose content is somewhat static
over time (e.g., star catalog) and the models of the systems
that are locally designed. The intelligent mission model
agents enable integration of the distributed design activities
providing a prompt communication of their system-level
impact. In this section, the role of three specific mission

The target agent provides information about desired target

phenomena. Depending on mission type (fly-by, orbiter, or
in-situ), the phenomena of interest and their data resolution
vary significantly. For example, during a fly-by mission, the
global phenomena of a target (e.g., orbit dynamics, average
surface albedo, phase angle) are desired. During the in-situ
mission, the local site properties (e.g., rock size distribution,
soil mechanics) are desired. Such a wide information range
cannot be supported by a single database. Currently, VM
employs a PCK (Physics Constant Kernel) agent for the
Solar System ephemerides. Planet-specific information
agents are being developed for future in-situ missions,
including the Mars Program.

The trajectory agent provides the relative state between a
target and the spacecraft at a specified time reference
system. The state vectors are generated with respect to one
reference but are desired with respect to another reference.
For example, state vectors are often propagated with respect
to the Solar Barycenter during cruise. The position relative
to a target then requires translating the vector using the
ephemerides of the target. Multiple sources are used for the
cruise data and the target ephemerides.

The telecom agent enables dynamic modeling of the
communication subsystem during the operation phase. It
explores available options by interacting with an on-line
telecom performance analysis server, TFP (Telecom
Forecast and Predict), and dynamically composes a
performance model for the communication subsystem. The
automated exploration enables loose coupling between the
DSN (Deep Space Network) resource management policy
and the mission system design. The complex relationship
between antenna performance, DSN service, and spacecraft
operation is a major challenge involved in developing the
communication subsystem model framework.

Mission System Desigh Activities

v

!

Mission Design Intelligent Locally composed
Information Mission Model Mission Models
Servers Agents *
Solar System
Ephemeris ------------- Target Agent - Targe t
Servers .- System
Navigation |...... Traiectory Agentl Y / \
jectory Agent|.
Servers R Y Virwal
S ‘ Mission Pavload
Telecom |] . pacecrait yloa
Forcast/Predict Telecom Agent ["# gystem <~ System
Analysis Server
v A
CAD server Swucwre Agent ”

Figure 4 Intelligent Mission Model Agents

One of the on going mission model agents is the structure
agent that will provide multi-resolution structure models by
dynamically integrating requested parts for specified
polygonal resolutions. The structure agents employ VRML
as the middle layer representation format to import various
CAD files. These intelligent mission model agents facilitate
distributed design information gathering and customization
of the information to enable the Virtual Mission Operation
phase discussed below.

6. VIRTUAL MISSION OPERATION

Virtual Mission Operation refers to execution of science
experiment scenarios on the virtual prototypes. The science
experiment scenarios represent the target phenomena
measurements desired by the mission science team.
Traditionally, one science team is organized per science
instrument and is responsible for composing the observation
sequences in collaboration with the mission operation team
during the operation phase of a mission. During the
operation phase, the operability of the mission system and
the impact of the inter-subsystem dependencies are
comprehensively analyzed. If the analysis results are not
favorable, it indicates that the science return may be reduced
since it will be too late to change the mission system after
launch. The ability to perform the operation phase activities
during the design phase is critical to achieve a
comprehensive design validation and a lifecycle-wide design
optimization.

The three major activities of the operation phase activities
are command sequence planning, execution (uplink and
downlink), and analysis (on board and ground processing).
Each activity involves many challenging tasks: the planning
activity, multi-discipline optimization, the execution
activity, health monitoring; and the analysis activity, science
product generation. Performing the above three activities
during the design phase requires progressive and automated
mechanisms to handle the evolutionary design process and
to make up for the lack of the operation team support. Three
research tasks in the VM project--Programmable Virtual
Mission, Ripples, and Virtual Mission Operation--
collectively pursue a progressive and automated operation
mechanism. The Programmable Virtual Mission task
develops an observation planning language for automated
observation sequence planning. The Ripple task develops a
Windows-based multi-screen operation console for
comprehensive execution monitoring. The Virtual Mission
Operation task develops a dynamically configurable
operation executive for science product generation by
interacting with the virtual prototypes.

Observation Planning Language

The observation scenario language, like any language, will
have to be evolved over time by the science team, adding
more sophisticated expressions. The current syntax is

presented in this section not to set the evolutionary path but
to initiate the evolutionary process by suggesting an example
case. The observation scenario syntax is composed of a list
of activities. Each activity consists of an initial condition, a
target, and a series of observation events for all subsystems
involved in the observation. An observation scenario may be
composed of multiple activities. The order of activities is
determined based on optimal resource criteria (e.g., total
duration, storage usage, down-link time, etc.) of performing
all of the activities. The spacing between activities indicates
the time involved in turning the spacecraft system from one
target position to the next.

The activity target may be described as a specific target
name or as a target type with a desired target property. The
available target types are Star, Sky, Planet, and Encounter.
The target properties are Near/Nearest, Bright/Brightest,
Dark/Darkest, etc. The degree of Near, Bright, and Dark can
be defined in the scenario. The target types and target
properties are provided so that an observation scenario can
be composed in an abstract manner. A different target may
be chosen for the same scenario depending on the spacecraft
system state and the requested observation time range.

The subsystem event is described with an event condition
and a subsystem operation command. (See Figure 5.) The
event condition is defined as a logical combination of three
types of conditions: target condition, time condition, and
command condition. The target condition is used to express
the necessary target state during the event operation. The
supported target states include distance, apparent size, phase
angle, etc. The time condition is used to express the required
time between events within a subsystem. The command
condition is used to express interdependency and
concurrency of the events between subsystems.

Two sets of model-based analysis software are developed to
support the event-driven scenario analysis: one for the
selection of the activity target and target condition of an
event, the other for command timing analysis. The first set
analyzes each candidate target for the desired condition and
verifies the optimality with respect to other mission
constraints. For example, the “nearest planet” activity target
is selected by computing the turn distance from the initial
spacecraft attitude to the nine planets in the solar system.
Additional constraint checking is applied for each planet in
the order of the turn distance until a planet is found that
satisfies the constraints. The command timing analysis is
performed for each subsystem based on the operation model
of the subsystem. A command may require different
execution time depending on the previous commands. For
example, the execution time of the “READ ALL” command
depends on how many exposures have been commanded
prior to the read command. The translated command
sequence is submitted to the VM operation executive,
mimicking the uplink process. Execution of the command
sequence is discussed below. Figure 5 describes the

information flow during the model-based observation
scenario analysis and command sequence translation
process.

Mission

dystem

Performancg
odels

Event condition
A.I'ICIIYS:'S

Event-driven
Observation Scenario

Event Command ¥
Vdlidation

articulation viewer updates the spacecraft orientation and
instrument articulation, the instrument viewer updates the
apparent target in the field of view, and so on.

Time~bised
Activity
Sequence
Genemtion

Virdual Mission System
cendrio Execution
Verification)

Figure 5 Observation Scenario Translation

Scenario Execution & System State Monitoring

While a spacecraft system is in operation, it generates two
types of data products: engineering data and science data.
The engineering data captures the state of the spacecraft
system, and the science data captures the state of the science
targets. The engineering data is also used for processing the
science data. The operation team controls the sampling
frequency of the engineering data for analysis of desired
system behavior. In VM, the engineering data and the
science data are directly piped to a multi-screen operation
console, Micro-Helm. Micro-Helm is a Windows-based,
scalable, distributed visualization server, which is equipped
with 9 flat-panel screens forming a 3-by-3-display array.
(See Figure 6.)

Micro-Helm has been implemented for monitoring of the
simulation process as if it were receiving the telemetry
stream from a real spacecraft system. The virtual prototypes
generate their operation behavior as time-tagged subsystem
states as they execute commands. The time-tagged states are
distributed to a set of visualization servers: trajectory,
attitude and articulation, instrument, telecom, etc. Each
visualization server accesses the structure model of the
corresponding subsystem and represents the state in a
graphical manner. For example, during the data acquisition
operation, the trajectory viewer updates the position of the
spacecraft system relative to the target, the attitude and

The time-based operation behavior simulation of the virtual
prototype discussed in Section 4 enables this real-time
monitoring of the simulation process in collaboration with
the VM operation executive [6,7]. The time-based operation
behavior simulation is performed with a variable clock
where “one second” is defined to be “the time required to
simulate one second’s worth of operation behavior.” One
second's worth of operation behavior may take a few
milliseconds or several seconds, depending on the
computational load of the simulation. To prevent gross
simulation time variation, complex computational processes
are distributed among multiple processors.

Science Product Generation

Science product generation is the ultimate validation of the
mission system, and it is one of the most challenging
processes in the virtual mission project. Science product
generation involves high-fidelity models of a target system,
instrument system, and spacecraft system, and requires
extensive computation [8]. For example, simulation of an
image acquired during the observation of an extended target
involves per-pixel ray tracing of the reflected sunlight where
the tracing geometry changes as the spacecraft system
changes its position and attitude during the exposure
duration. The spectral signature of the reflected sunlight also
changes depending on the surface material and the spectral
sensitivity profile of the instrument. The integration of the

Figure 6 Virtual Mission and Micro-Helm

Complex geometric, dynamic and radiometric relationships
among the Sun, targets, spacecraft system, and instrument
provide the operability validation that cannot be acquired
with science product generation processes alone.

It is important to note that high-resolution data in the
simulation indicates the level of detail in the information,
not the accuracy of information. During the design phase, a
detailed description may not be made with a high level of
certainty. However, if the uncertainty range can be specified,
high-resolution measurements can be simulated for the
specified uncertainty range, thus providing predicted
impacts of the system design on the ultimate science return.

As the mission lifecycle progresses, the uncertainty range
may reduce. The provision for high-resolution simulation
allows seamless tracking of the reduced uncertainty
throughout the lifecycle. In the following section, mission
lifecycle alignment is discussed with respect to the extended
role of VM at each phase of the lifecycle.

7. MISSION LIFECYCLE ALIGNMENT

The lifecycle tracking mission system representation is
important in three aspects: evaluation of the modeling and
simulation technology in the design validation process,
inheritance of the validated mission models by the next
generation of missions, and extension of the modeling and
simulation technology in support of the entire lifecycle. This
section addresses the third aspect based on the several years
of experience in supporting the JPL Flight System Testbed
and science observation planning activity of the Deep Space
One mission.

The JPL Flight System Testbed (FST) was established in
1994, as a part of the simulation-based concurrent
engineering revolution. The goal of the FST is to create a
flight system testbed composed of a set of simulation
modules that behave like real subsystems and provide a
transparent transition path to real subsystems progressively
as they become available. In that way, a subsystem can be
tested in an integrated mission system setting. In support of
the FST, the VM project develops Instrument Testbed [9]
where the instrument-system-related activities--instrument
hardware prototyping, calibration software, and flight
software-- can be concurrently engineered.

Figure 7 depicts the process of concurrent calibration
software development. The development is performed
employing a virtual target source and a virtual camera to
populate the test database, and a set of the calibration
parameters is automatically analyzed from the test database.
The accuracy of the analysis software can be easily verified
by controlling the quality of the test database through the
model parameter setting of the virtual camera. An interesting
fact to note is that the performance model of the virtual
camera is derived from the calibration parameters. Thus,
when the calibration software is applied to the real
instrument, the calibration result can be used to update the
accuracy of the virtual instrument’s model.

the VM command sequences. The verified VM command
sequence is then translated to a mission-specific operation
command sequence following the command dictionary
syntax. The science data production capability of VM
provides a great advantage over the mission flight system
testbed by enabling verification of context-sensitive
commands such as data compression, automated target
extraction, etc.

Desired
Calibration
Controller D%e
Calib-ation
Software
Estimcaod
Instrument
Model
Fuoreneters
Calilwration
Software
Verification

Figure 7 Calibration Software Verification Process

Figure 8 depicts the process of comprehensive flight
software validation. In general, flight software development
is composed of four parts: instrument command interface,
onboard data processing, instrument hardware control, and
interaction with the spacecraft system for acquiring the
system states necessary for data processing. By integrating
the flight software module with virtual instrument hardware
and a virtual spacecraft system, the flight software can be
comprehensively verified for the ultimate science
experiment scenarios.

Figure 9 depicts the process of science observation planning
where the VM is viewed as a virtual flight system testbed
executing the observation scenario [10]. The experiment
design is synthesized by employing the high-level
observation scenario design language and the model-based
scenario analysis process. The synthesized experiment
design is verified on the virtual mission system that
simulates the properties of the mission system by executing

8. FUTURE DIRECTION

One of the great technical challenges in the mission system
design is in creating an intelligent spacecraft system that can
explore unknown territories with minimum guidance from
ground-based operators. The technical approach toward
developing an ‘intelligent spacecraft system" may be
discipline-specific (e.g., automated navigation) or generic
(e.g., artificial intelligence). VM approaches it as an
evolutionary communication system of multiple discipline-
smart subsystems. Therefore, VM seeks to develop a multi-
discipline-shared communication framework that enables the
evolution path toward the future deep space missions.

The Space Mission Semiotics research activity of VM is
developing a shared information categorization structure as
the basis of the communication framework [11,12,13,14].
The mission model information categorization structure will
be employed to progressively educate the subsystems to

Corwersion

Virtual
Scene
Generation

Virtual
Spacecraft
System
Instrument
Hardware
Figure 8 Instrument Flight Software Verification Process
Experiment Design Mission System Design
#
Observation Scenario
Model-based Analysis
Scenario Translation
|
Synthesis Verification
Corerand Mission-specific
Dictio R— Command Sequence
? Generation:

Figure 9 Virtual Mission Testbed

perform self-diagnosis (self-image formation or self-
modeling), to formulate their role with respect to the system
(relation modeling), and to plan their operation sequence
(autonomy).

The self-image formation is a natural extension of the
automated calibration process, which can be achieved by
providing a set of calibration target criteria and the target
response analysis algorithms. The relation modeling
involves each subsystem developing a model of the
spacecraft system from the subsystem-centered perspective.
This is an extension of the virtual mission system, where
multiple projections of the virtual mission system are
created, each projection from the point-of-view of a specific
subsystem. The autonomous operation planning will be
approached as the derivation of the observation scenario
language by designing subsystem-centric event conditions
and condition analyzers.

ACKNOWLEDGEMENTS

The work described in this paper was performed at Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration. The Information Systems Branch of the
Research Program Management Division, Next Generation
Infrastructure program, Intelligent Synthesis program, and
High Performance Communication and Computation
program of NASA supported the research.

REFERENCES

{11 M. Lee, R. Weidner, W. Lu, "Mission Lifecycle Modeling
and Simulation," 2000 IEEE Aerospace Conference, Big Sky,
Montana, March 2000.

[2] K. J. Lieberherr, “Adaptive Object-Oriented Software,”
An International Thomson Publishing Company, 1996.

[31R. J. Weidner, “SAX — Object-oriented parser generator,”
http://cicero.jpl.nasa.gov/~richard/sax.htmi.

[4] R. J. Weidner, “LUTHOR - Object-oriented lexical

analyzer,” http://cicero.jpl.nasa.gov/~richard/luthor.html.
oL A8-1095

[5] R. J. Weidner, “A Component-based Implementation of

Agents and Brokers for Design Coordination," submitted to

2001 IEEE Aerospace Conference, Big Sky, Montana, March

2001.

[6] M. Abajian, “DEM - Distributed Execution Manager,”
http://msim.jpl.nasa.gov/~abajian/DEM-1.0.html.
bubbles . jpl.hasa.q0v €L 00-1829
[7] A. Teng, M. Lee, “Vmlib: an” Object-oriented Library for
Visualizing Observation Sequences in Spacecraft Missions,”

Military, Government, and Aerospace Simulation, 1998,
Advanced Simulation Technology Conference.

[81 M. Lee, R. Swartz, and R. Weidner, “SceneGen, > NASA
Tech Brief, 1997.

[9] R. J. Weidner, et al., “Instrument Design Laboratory,”
http://msim.jpl.nasa.gov/IDL.

[10] M. Lee, et al., “MICAS Science Observation,”
http://msim.jpl.nasa.gov/MICAS.

[11] U. Eco., “A Theory of Semiotics,” Indiana University
Press, 1976.

[12] M. C. Henson, “Elements of Functional Languages,”
Blackwell Scientific Publications, 1987.

[13] M. Devitt, K. Sterelny, “Language & Reality,” A
Bradford Book, The MIT Press, Cambridge, Massachusetts,
1995.

[14] G. Fauconnier, “Mappings in Thought and Language,”
Cambridge University Press, 1997.

Meemong Lee is a principal
technologist at the Jet Propulsion
Laboratory. Duirng the last 17 years at
JPL, she has developed various Earth
and planetary information systems
including Spectral Analysis Manager
(SPAM), Concurrent Image Processing
Executive (CIPE), Planetary Analysis
Tool Set (Plato), and Virtual
Instrument System (SceneGen). She has been leading the
Virtual Mission project since 1996 integrating the modeling
and simulation research activities to advance the flight
software system and science experiment design and
development process. She currently manages three research
activities, Programmable Virtual Mission, Virtual Mission
System, and In-situ Site Characterization. She also has been
supporting the Deep Space 1 mission with the flight
software development and science observation sequence
design for MICAS instrument system. She has a bachelor’s
degree in Electronics Engineering from Sogang University
in S. Korea, a master’s degree in Computer Science and a
doctoral degree in Electrical Engineering from Oklahoma
State University.

Richard J. Weidner is a principal
technologist at Jet Propulsion
laboratory. During the last 18 years at
JPL, he has developed numerous
advanced information system
technologies and mission operation
tools including OOSPICE, QMV, SAX,
Luthor, SIMP, SASED, Mars

Calendar, Mars Clock, etc. He has been leading the
Mission Simulation and Instrument Modeling Group since
1997. He also manages Model-based Design, Intelligent
Mission Model Agents, and Ripples activities for supporting
the Space Science Information Systems research, Next
Generation Infrastructure System, and Intelligent Synthesis
Environment Initiative program. He has a bachelor’s
degree, a master’s degree, and a doctoral degree in
Electrical Engineering from Oklahoma State University.

Wenwen Lu is a senior engineer of
the Mission Simulation and
Instrument Modeling group at Jet
Propulsion Laboratory. She has been
involved in the Virtual Mission
project since she joined the lab in
1997. She leads the Virtual Mission
Operation task, developing
distributed visualization servers and '
various analysis software systems for target phenomena
modeling and autonomous operation planning. She also
supports in-situ Site Characterization activity for the Mars
technology program with rock field synthesis and multi-
rover-based science instrument operation executive design
and development. She has a bachelor’s degree from
Shanghai University in China, and a doctoral degree in
high-energy physics from Caltech.

